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Abstract

The phase retrieval problem is of wide interest because it appears in a number
of interesting application areas in physics. Several kinds of phase retrieval
problems appeared in laser optics over the past decade. In this paper we
consider the numerical solution of two phase retrieval problems for an unknown
smooth function f with compact support. We approximate f by a linear
spline. The corresponding spline coefficients are iteratively determined by
local Gauss—Newton methods, where convenient initial guesses are constructed
by a multilevel strategy. We close with some numerical tests which illustrate
our method.

PACS numbers: 02.60.Pn, 42.30.Rx, 42.65.Re

1. Introduction

In many problems which arise in crystallography, electron microscopy, astronomy, coherence
theory and optics one often wishes to recover phase from only magnitude information simply
because only the magnitude may be recorded or is available for measurement. For example, the
so-called crystallographic phase problem is the problem of determining the phase information
because in x-ray crystallography only the scattering intensity can be recorded, and the loss of
the phase information makes the Fourier inversion impossible.

The optical phase problem recently appeared in current noninterferometric optical
methods for the characterization of ultrashort optical signals. Noninterferometric
spectrographic techniques like frequency-resolved optical gating (FROG) [1] or temporal
analysis of spectral components (TASC) [2] rely on the solution of a phase retrieval problem.
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Only the magnitude of the Fourier transform of an electromagnetic wave is available for
measurement. Therefore, the full characterization of the electromagnetic wave depends upon
the retrieval of the phase from only spectral magnitude information. The ability to reconstruct
the complex electric fields of ultrashort optical signals from only magnitude information is
very useful in a number of current optical applications. The issue of the uniqueness of several
schemes and methods suggested for FROG and TASC has been recently thoroughly analysed
[3]. But due to the well-known stagnation problem, still a successful reconstruction by any of
the known iterative algorithms [1] cannot be guaranteed.

The phase problem appears in one and higher dimensions. The results in [3] suggest to
develop a working phase retrieval algorithm for the one-dimensional phase problem the more
o as up to now no algorithm without stagnation problems for this case exist.

In a phase retrieval problem one seeks to recover an unknown compactly supported,
sufficiently smooth function f : R — C from the modulus | f| of its Fourier transform [5].
In praxis, only values of | f| at finitely many equispaced nodes are given. Since phase and
modulus of f are, in general, independent of each other, it is necessary to use additional
information on f. It should be stressed that the issue of the uniqueness is mentioned but not
thoroughly analysed in this paper. The purpose of this paper is to describe a new promising
algorithm for the one-dimensional phase retrieval problem. We consider two one-dimensional
phase retrieval problems which appear in several fields of mathematical physics.

In section 2, we wish to recover an unknown compactly supported, sufficiently smooth
function f : R — C although only finitely many, equispaced measurements of | f| and | f|
are given. Note that the recovery of f is equivalent to the recovery of the phase of f. This
kind of phase retrieval problem appears in electron microscopy, wave front sensing and laser
optics (e.g. FROG and TASC [3]). Our iterative algorithm for this phase retrieval problem is
based on a linear B-spline approximation of f. The unknown complex-spline coefficients are
determined by a least squares problem which is iteratively solved by a local Gauss—Newton
method.

In section 3, we consider a phase retrieval problem with non-negativity constraint and
call it a constrained phase retrieval problem. Here we reconstruct an unknown non-negative,
sufficiently smooth function f : R — [0, 0o) with compact support if finitely many equispaced
measurements of | f| are given. This type of phase retrieval problem appears in image recovery
from speckle interferometry data in astronomy and from structure factors in crystallography [4].
Our iterative algorithm for this constrained phase retrieval problem is again based on a linear
B-spline approximation of f. The unknown non-negative spline coefficients are modelled by
squares of real constants which are determined by a least squares problem without constraints.
Then this least squares problem is solved by a local Gauss—Newton method.

The convergence of a local Gauss—Newton method depends on a good choice of an initial
guess. In section 4, we propose the construction of initial guesses by a multilevel strategy.
Finally in section 5, we present results of some numerical tests.

2. Phase retrieval problem

In electron microscopy, wave front sensing and laser optics (e.g. FROG and TASC [3]), one
often wishes to recover a compactly supported, sufficiently smooth function f : R — C
although only finitely many equispaced measurements of |f| and |f| are made. By f we
denote the Fourier transform

fw) = /OO fx)e ™ dx (v € R).
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Assume that supp f € [—1, N] is connected, where N € N is some power of 2. Let ¢ be the
centred linear B-spline which is defined by

1+x —-1<x <0,
px):=491—x 0<x <1,
0 otherwise.

Then we obtain for the Fourier transform of ¢ that
@(v) = (sinc 3)? (weR)

with

sinv/v v #0,

1 v=0.

For brevity, we denote the reconstructed function by f too. In this section, we consider the
following phase retrieval problem: reconstruct the complex-valued linear spline function

sincv := {

N—-1
fO)=) eplx—n)  (a€CixeR) )
n=0
if |[f(m)| n=0,...,N—1)and |f(*)| (k = —N,...,N — 1) are given. Note that e/’ f

with arbitrary 8 € [0, 27) is also a solution if f is a solution of this phase retrieval problem.
Using the properties of the Fourier transform, we obtain that

N—1 )
o) = (z N ) o)
n=0

and hence
N-1 N
fw) = (Z T e) ¢(v)
n=0
such that
If @I = p)p@)
with

N—1 N—-1
p() = (Z Cn e‘"”’) (Z n ei"”) .

n=0 n=0
The complex-valued trigonometric polynomial p of order N — 1 has the following form:

(V) = (€oCo + €11 + -+ -+ Cy_1Tn—1) + (CoT1 + €182 + - - -+ Cy_2Cy—_1) €”

+ (Cof‘z +cic3+---+ CN,3Z’N,1) ezw

+CcoCN_1 e(N_l)lU + (E‘ch +Cicp+ -+ CN_2CN_1) e "
+ (E‘oCz +cic3+---+ E‘N73CN,1) e_z”’

+CoCN—1 e_(N_l)“’.

Then we obtain that
JPR _ IfoP

|¢(U)|2 (sinc %)4

p) forall vel[—m, ]



4194 B Seifert et al

km

Now we choose v, = W(k = —N,..., N — 1) and consider
|/ o)
p(u) = di = ——— >0, )
(sinc %)
ie.
0

CoCN—1

CoC1+ -+ +CN_2CN_1
lcol® + -+ + len—1]?
coC1+ -+ CN-2CN-1

= (dp 'y

ijk/N\N—1
(e / )j,szN

CoCN-1
The coefficient matrix of this system of linear equations is the modified Fourier matrix of
order 2N:
ijk/N\N—1
(errlj / )j.k=—N‘
Its inverse is the matrix

1 . _
ﬁ(e T“]k/N);'\,,kzlfN'
N-1

The product of this matrix with the vector (dy),;__, can be computed by the fast Fourier
transform of length 2N (see [6], pp 17-21) and is denoted by

1 ..
N-1 . —7ijk/NyN~-1 N-1
()i ly = 5o @™MTL v @iy 3)
2N
Note that e_y = 0. Thus we obtain the following system of nonlinear equations:
2 2 2
leol” + [e1]”+ -+ ]en-1|” = €0 > 0,
coCl +Ci1Cr+---+CN_2CN_1 = %(61 +e_1) € C,

- - - 1 _
copCr+cCc1C3+ -+ CN_3CN_] = 5(62 +e_,) e C, 4)

_ 1 _
coCn-1 = 5(ey—1 +e1_y) € C.

From (3) it follows that

By (1) we have ¢, = f(n) (n =0, ..., N — 1) such that the relation
lcol* +le1 |+ +len—1* = eo
can be considered as a discrete Parseval equation for the vectors ( f (n)) ,],V=_01 and ( f (v)) 11(\/:—71 N

N-1

= 1 |F (wol?
§|f<n)|2= N

= (sinc %)4
In order to compute the complex coefficients ¢, (n = 0, ..., N — 1) of the function f, we have
to solve the nonlinear system (4) under the restrictions |c,|*> = |f(n)]>? (n =0, ..., N — 1).
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Now we write this system (with complex unknowns c,) as a system with real unknowns
a, :==Rec,and b, :=Imc, (n =0,..., N — 1). Thus we obtain the following system
a+ai+--+ay +b3+bI+- - +bY | = h,
apay +ayax +---+ay_ran—1 + bobl + b1b2 +---+ bN72bN71 = hl,
apar +ayaz +---+ay-_zayN—1 + b0b2 + b1b3 +---+ bN_3bN_1 = hoy,

apan—1 +boby_1 = hy_1, 0 = hy,
boay +biay + - -+ by_sany_1 — aphy —a1by — - - —an_2by_1 = hyy,
boay + biaz +--- +by_3zay_1 —aoby —aibz +--- —ay_3by_1 = hy,
boan_1 — apby_1 = hay_1
under the constraints a> + b2 — |f(n)|* =0 (n =0, ..., N — 1), where we set
I Re(e, +2_,) n=0,...,N—1,
h, =140 n=N, (5
3 Im(e,—y +2y_n) n=N+1,...,2N — 1.

Leta:= (an)flvz_ol, b = (b,) flvz_ol and h := (hn)ifzv 0 ! Further we introduce the Hankel matrix
H (a) with the first row a’, where below the counterdiagonal all elements are zero. Let T (a)
be the upper triangular Toeplitz matrix with the first row aT. Then our nonlinear system reads

as follows:
H@) HD))\ (a _
<—H(b) H(a)) (b) ~h=0 ©)
subject to the nonlinear constraints
a’+b>—f=0 (7

. _ N-1 N-1
with f := (|f(n)|2),]1\]=0l ,a = (a,zl)nzo and b? := (bﬁ)nzo . Here 0 denotes a zero vector.
Since the data vectors h and f are based on measurements, we consider instead of the above
constrained nonlinear system the following unconstrained least squares problem with a penalty

parameter p > 1:

H@) Hb)) [a h
H (—H(b) H<a>> (b) -
Here ||-|| denotes the Euclidean norm. The parameter p balances the influence of the two
nonlinear terms in (8). The second term in (8) is the constraint which is important for a good
convergence of our iterative method. Hence we have > 1. However u > 1 is not useful in
general, since then the first nonlinear term in (8) is not sufficiently noticed. With the notations
y:= @, bHT e R g:= (hT, ufH)T € R*", and

2
+ pn?||a’ + b? — £||> = min. (8)

F(y) := G(y)y. )
where G(y) is the block matrix
H(a) H(b)
Gy):=|-H®b) H@ |eRM,

ndiaga pdiaghb
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which depends linearly on y, the nonlinear system (6) under the constraints (7) is equivalent
to the inverse problem

F(y) =g (10)
Furthermore, the least squares problem (8) is equivalent to the Gauss—Newton problem
IF(y) — glI* = min. (1D

The inverse problem (10) is ill posed. This means that (10) suffers from the following
deficiencies.

e (10) is not solvable for arbitrary given g € R*" .

e If (10) is solvable, then its solution is not unique.

e A possible solution of (10) does not depend continuously on g € RV,

To cope with the ill posedness, problem (10) has to be regularized. A known and effective

technique is Tikhonov regularization [7]. We use an approximate minimizer of the Tikhonov
functional

o) = |F(y) — g’ +ely - §I° (12)
as an approximate solution of the inverse problem (10), where o > 0 is a small regularization
parameter and where § € R*" is a coarse approximation of the solution. The choice of § is
crucial. Available a priori information about the location of least squares solution of (11) has
to enter into the selection of §. Later we will construct y by multilevel strategy. By the choice
of ¥, we can influence which least squares solution we want to approximate. It can be shown
that the Tikhonov functional (12) is locally a convex functional.

Now we can explicitly compute the Jacobian as the block matrix
H@+T(@ HM+TD)
F'yy=|-H®)+T(®d) H(a) —T() | RN, (13)
2udiaga 2udiagh
Thus F’(y) depends linearly on y. In some sense, F(y) is ‘quadratic’, i.e., each component
of F(y) is a quadratic polynomial with 2N variables. Under these conditions, there exists a
vector y* € R* with

@(y") = min{®(y): y € R*"}.

Now we define a sequence {yi}7o, which converges to y* for k — oo. Our algorithmic
approach starts with the linear Taylor expansion

F(y) = F(yo) + F'(y)(y — ¥o)-
Then the simplified Tikhonov functional

O (y) = IF(y) + F' Yo (v — yo) — gllI> +ally - 31
is minimized with the vanishing gradient condition

VeO(y) = 2F (o) [F(yo) + F'(y) (¥ — yo) — g+ 20(y = §) = 0.
Thus we obtain the update formula

Ykl = Yk — AYi (k=0,1,...) (14)
with

LF'(yo) ' F'(vi) + al 1AV, = F'(y0)" (F (i) — 8) + (e = 9). (15)
This Gauss—Newton method requires sufficiently good starting guesses yo, which we will
obtain by a multilevel strategy in section 4. The linear system (15) has a unique solution if a
suitable regularization parameter o > 0 is chosen. Since the minimization of the Tikhonov

functional (12) can be regarded as a trust-region method, the linear system (15) uses the idea
of the Levenberg—Marquardt method for (11) (see [9], pp 117-21).
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3. Constrained phase retrieval problem

Now we consider the problem of phase retrieval from a measurement of | f| and a non-
negativity constraint f > 0. Such phase retrieval problems appear in image recovery from
speckle interferometry data in astronomy and from structure factors in crystallography [4].

In this section, we consider the following constrained phase retrieval problem: reconstruct
the non-negative linear spline function

N—-1
f) =Y cholx—n) (cn,x €R) (16)

n=0

if | f ('%) | (k =0,...,N) are given. Here ¢ denotes again the centred linear B-spline. The
use of the squares c,zl assures the constraint f > 0 (see [9], p 188).
Using the properties of the Fourier transform, we obtain that

N—1
fw) = (Zcﬁ e‘“") P (v)
n=0

and hence
N—1 A
fo = (Z cn e) P()
n=0
such that
If @ = p)p@)
with

N—1 N—1
p) = (Z cﬁ ei””> (Z cﬁ ei"”) .
n=0

n=0

If (16) is a solution of the constrained phase retrieval problem, then
N-1
g(x) = Z Clz\lflfll(p(x - }’l) (-x € R)
n=0

is also a solution, since g > 0 and |§(’%)‘ = ‘f(%)‘ forallk =0,...,N.
The real even trigonometric polynomial p of order N has the following form:

p) = (cg +ct+ c?\,_l) + 2(6‘%6% +clca 4+ c%,_zclz\,_l) cosv
+2(ches +cies + -+ cxy_sChy_1) €08(2) + - - - + 2¢5cry_; cos((N — Dv).
Then we obtain that

f@P _ 1f@P
P (sinc 3)

7 =p) forall v e[0,x].

Now we choose vy := ’%(k =0,..., N) and consider
2 2
pp =d =LY S0 koW, (17)

(sinc ”—;)4
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ie.

4, 4 4
cgHci+ -+
202,00 2 2
CHCT+CTCs + -+ Cy_2Chy

2.2 2.2 2 2
’C gy tejes et oy sCyo | AN
N+1 = ( k)k:(y
2.2
CoCN-1

0

where we introduce the cosine matrix by
jkm N

Cn4+p := | & cos —
N J =0

with gg = ey 1= % andg; :=1fork=1,..., N — 1 (see [6], p 229; [8]). The inverse matrix
of Cy4 is the scaled cosine matrix %CNH. Since N is a power of 2, the product of Cy,; and
the vector (dy) 11:[:0 can be computed by a fast algorithm [8]. The result is denoted by

1

(h)j= = 2 Cns1 (di)iZo. (18)
Note that 4y = 0. Thus we obtain the following system of nonlinear equations:

cg+ct+ o+ ch_ = ho,

c(z)cf + c%c% +-+ C12V72C12V71 = hy,

céc% + c%c% +- 4 cjz\,73c12\,71 = hy,
C(Z)Clzvil :thlv O:hN
From (18) it follows that

N-1
1 (1 1
ho=— | zdo+ dp+ -dy | .
o= (300 T o)

By (16) we have cﬁ = f(n) (n=0,..., N — 1) such that the relation

C8+C?+"'+C?\],1:h0 (19)

can be considered as a discrete Parseval equation for the vectors (f (n)),ll\’:_o1 and (£ (vy)) N o

= 1 =« Sl |
D () = (|f(0>|2 +2) —|f<n>|2> : (20)
=0 2N im (sinc %)™ 16

In order to compute the real unknowns c¢,(n =0, ..., N — 1), we have to solve the following

nonlinear system:

4, 4 4 _
cotci+-+cy_ = ho,

22,22 2 2 _
cocy Hejcy ey Cy_ = hy,
22, 22 2 2 _

CoCy Heics + -+ ey_sCy_ = ho,

2.2 _
COCN—I = hN—l-
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Introducing the vector h := (h,,),]lv:_ol , we obtain the nonlinear problem
F.(z) =h 2L

with F.(z) := T (z*)z?, where z*> := (03)5:_01 is the pointwise square of z = (c,)"~; and

T (2?) is the Toeplitz matrix introduced in section 2. Since the data vector h is based on
measurements, we consider instead of the above nonlinear system the following least squares
problem:

| Fe(z) — h||* = min. (22)

The inverse problem (21) is ill posed. To cope with the ill posedness, problem (21) has
to be regularized. A known method is Tikhonov regularization [7]. Thus we determine an
approximate minimizer of the Tikhonov functional

®(2) == || Fe(z) — h||* + oz — 7| (23)

as an approximate solution of the inverse problem (21), where o > 0 is a small regularization
parameter and Z € R" is a coarse approximation of the solution. The choice of Z is crucial.
Available a priori information about the location of least squares solution of (22) has to enter
into the selection of Z. Later we will construct Z by multilevel strategy. By the choice of Z, we
can influence which least squares solution we want to approximate. It can be shown that the
Tikhonov functional (23) is locally a convex functional.

Now we can explicitly compute the Jacobian

Fl(z) = 2(H(z*) + T (z*)) diag z, (24)

where the Hankel matrix H (z°) was explained in section 2. Then there exists a vector z* € RY
with

& (z") = min{P.(z); z € R"}.

Now we define a sequence {z;};2,, which converges to z* for k — o0o. Using the linear Taylor
expansion

Fe(z) ~ Fe(z) + F(z) (z — 7),
the simplified Tikhonov functional reads as follows:
) (2) := | Fo(zo) + F{(z) (2 — z) — h||* + al|z — 2.
This quadratic functional is minimized with the vanishing gradient condition
Vo® (z) = 2F/(z) [ Fe(z) + F.(z)(z — 7;) — h] +2a(z — 7) = o.
Thus one ends up with the iterative Gauss—Newton method
Ziyl = Zr — AZyg k=0,1,...) (25)
with
[F/(z)" Fl(z) + a1 1Az = F{(z)" (Fe(z) — h) + «(z — 7). (26)

This local Gauss—Newton method requires sufficiently good starting guesses zy, which we will
construct by a multilevel strategy in section 4. Analogously to (15), the linear system (26) has
a unique solution for appropriate regularization parameter o > 0.
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4. Multilevel strategy

The multilevel strategy of the Gauss—Newton method is based on the following idea: in order
to compute a solution of our least squares problem on a fine grid, first we compute the solution
on a coarse grid. Then we interpolate the coarse grid solution to the fine grid and use it as
initial guess of the local Gauss—Newton method on the fine grid.

The Gauss—Newton method is local quadratically convergent (see [9], p 186) to an isolated
minimizer of the Tikhonov functional ®(y) and ®.(z), respectively. The Gauss—Newton
iteration requires a good initial guess. Therefore a multilevel strategy may be useful. We
compute a first solution on a coarse grid. Further to the lower dimension of the nonlinear
system for the coarse grid, an advantage of the multilevel strategy consists in a small number
of critical points like extrema or saddle points in the minimization problem (8) and (22),
respectively.

A well-known procedure for handling the phase retrieval problem is the Gerchberg—Saxton
algorithm [10], which is a non-expansive fixed point algorithm. It is frequently convergent
in practice, but it has not been proved to converge in all cases. Numerical experiments
have shown that it requires up to 10* or 10° iterations in some cases [11]. These enormous
numerical costs are closely related to the ill posedness of the phase retrieval problem [12]. The
multilevel strategy decreases the numerical effort by the computation of good approximations
of the solution on coarse grids. Examples are given in section 5.

Assume that the measurements |f(n)] n = 0,...,N — 1) and |f(k7r/N)| k =
—N,...,N — 1) in section 2, and |f(kn/N)| (k = 0,...,N) in section 3, respectively,
are given. Additional values are not available. First, we explain the multilevel strategy for the
constrained phase retrieval problem (21). The extensions needed to handle (6) subject to (7)
analogously are given below.

4.1. Multilevel strategy for the constrained phase retrieval problem

Let N = 2/ with J > 3 be given. By the multilevel strategy, we reduce the number of
unknowns of (21). Here we use the special structure of the nonlinear system (21). By
z; = (Cj,n)i/:_ol e R (j = jo,...,J) we denote the solution of F.(z;) =h; on the jth grid
{0,277, ..., (27 — 1)277/}. The right-hand side h is restricted to the jth grid by

h; = (h; )2 € R with  hj, =2/ -y, 27)
and j = jo,..., J. Note thath; = hand z; = z. By (27), we select every 2’ ~/th equation of
(21). In addition to it, we group the 27~/ unknowns cps-ip, . . ., C2/-i(n+1)—1 and replace them

by ¢; . So the factor 2777 comes into (27).
We introduce the linear spline function

2-1
fi) =" 3,02 x —n) (x € R), (28)
n=0
which approximates f from (16) on the jth grid, see figure 3. The computation on the jth
grid is called the jth level of the multilevel strategy.
A solutionz; with j < J of F¢(z;) = h; onthe jth grid of size 2/ approximates a solution
z = z; of the system (21) on the fine Jth grid: the expression flj =F(z; ®1,_j) € RY
with1;_; := (1)%:(; ~! and the Kronecker product ® yields

Bjorin=2""Thj, = hyri, n=0,...,2/ —1).
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In general, the components I jm and hy,, with m # 27=Jn do not coincide. Furthermore, the
existence of a solution z* of (21) does not assure the existence of coarse grid solutions zf;
for j < J. In this case, the lower-dimensional nonlinear systems are really nonlinear least
squares problems.

From this approximation property we derive the following multilevel algorithm, starting
from the joth grid.

Algorithm 4.1. (Constrained phase retrieval problem)
Input: N =27,3 < jo < J.|f(&)| (k=0,...,N),a > 0.

0. Precompute i, (n =0, ..., N) by (17)—(18).
1. For j = jy determine z;‘.o as follows:

1.0. Choose a coarse approximation Z,.

1.1. Determine h;; by (27).

1.2. Minimize the Tikhonov functional ®. (z jo) by the Gauss—Newton method (25)—(26)
with the initial guess z;, o = Z;, and the coarse approximation Z;,. Use e.g. NLSQ-ERR
from [9], pp 219, 417. One gets the minimizer z; .

2. For j = jo+1: J compute z; as follows:

: : : 5. — (> 2/ -1 * _ * 2711
2.0. Determine the coarse approximation Z; = (Z )y from z;_; = (2j_; i
= % _ j—1 > — L= *
by Zjx = ijl,k(k =0,...,27" — 1) and by Z; +1 = E(ijl,k + ijl,k+1)

(k=0,...,2771 — 1) with z;f_mj,l =0.
2.1. Compute h; by (27).
2.2. Minimize the Tikhonov functional ®.(z;) by the Gauss—Newton method (25)—(26)
with the initial guess z; o = Z; and the coarse approximation Z;. Use e.g. NLSQ-ERR

from [9], pp 219, 417. One gets the minimizer z;f.
Output: z* = z7.

Finally, a minimizer z* of the Tikhonov functional (23) is found. Note that a coarse grid
with 4 or even 8 nodes is often useless, since there are not enough points to construct a good
approximative solution. Therefore we start with a coarse grid for jo > 3. By (19), we know

that a solution z;, = (Zj0,07 e zjo,m_l)T of (21) on the level jo, i.e. of F.(z;) = h;,, fulfils

Zj'o.o +.t+ 7 = hj, 0. Thus, in the case jo = 3, we can choose Z; = %(1, 2,3,4,4,

Jjo,290—1
3,2, DT with b* = %h.%,o as coarse approximation.

Damping strategies (see [9], p 120) for the Gauss—Newton methods are recommendable
in particular in step 1.2, when the coarse approximation Z;, is probably remote from the

solution z* .
Jo

4.2. Multilevel strategy for the phase retrieval problem

While solving the system (6) under the additional constraints (7) we are faced to a continuous
manifold of solutions. These solutions are not isolated. With each solutiony = (a™, bT)T, the
vector (aT cos B — bTsin 8, aT sin 8 + bT cos B)T for arbitrary g € [0, 27) is a solution, too.
That corresponds to the replacement of ¢, by ¢, in (1).

An opportunity to cope with this continuous manifold is scaling one of the components.
Another method is Tikhonov regularization (12) which selects a particular solution out off the
manifold.

The nonlinear system (6) subject to (7) has an approximation property which is analogous
to that in subsection 4.1. We solve F(y) = g on a stepwise refining grid. Again analogously
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to (27), we define g; = (gj’n);:i(i),l by

21‘71_82#!_" n:O,...,Zf”—l,
gjin = . . (29)
827-in n=2 ,...,3~2J—1.

The latter restrictions without the factor 2/~7 concern the constraint conditions (7).
Now the solution y; = (a], b})T € R”" of F(y;) = g; € R*? has the approximative
property that g; := F(y; ® 1,_;) € R fulfils
8j2-in = &2-in n=0,...,3-2/ —1).
Again, the linear spline functions

271
£i() = (@jn +ibj )o@ x —n) (x eR)
n=0
approximate the function f on the coarser grids. Hence, we obtain the following multilevel
algorithm.

Algorithm 4.2. (Phase retrieval problem)

Input: N =273 joo<J,uz21l|f)] m=0,....,N—1),
N-—1,a>0.

0. Precompute i, (n =0, ...,2N — 1) by (2)—(5).
1. For j = jo determine yjb as follows:

F&)| k= =N, ...,

1.0. Choose a coarse approximation ¥ j;.
1.1. Determine g;, by (29).
1.2. Minimize the Tikhonov functional cD(y jo) by the Gauss—Newton method (14)—(15)
with the initial guess y;, o = ¥, and the coarse approximation ¥ ;,. Use e.g. NLSQ-ERR
from [9], pp 219, 417. One gets the minimizer y7 .
2. For j = jo+1: J compute y7 as follows:

. . . ~ ~ 27+ _1 2/ 1
2.0. Determine the coarse approximation §; = (¥;)j_, from yjfl = ()’771,/() 20

by S)j,Zk = y;—l,k(k = 0, ey 27 — 1) and by yj,2k+1 = %(y;—l,k + y;‘k—l,k+l)
(k=0,...,2/ — 1) with y;.‘_lyz, = 0.

2.1. Compute g; by (29).

2.2. Minimize the Tikhonov functional ®(y;) by the Gauss—Newton method (14)—(15)
with the initial guess y; o = ¥; and the coarse approximation §;. Use e.g. NLSQ-ERR
from [9], pp 219, 417. One gets the minimizer yj.

Output: y* :=y75.

Finally, a minimizer y* of the Tikhonov functional (12) is found. The coarse approximation
¥, can be chosen as follows yj x = | f(2/7%k)| for k = 0,...2% — 1 and yj;,x = O for
k=2h, . . 20t 1,

5. Numerical tests

5.1. Tests for the phase retrieval problem

We have tested the multilevel algorithm 4.2 with numerous realistic examples. Therefore, we
have chosen functions f and hence ¢, = f(n) e C(n =0,..., N — 1). Using a, = Rec,
and b, = Im ¢, we have generated the right-hand side h from (6) and f from (7), respectively.
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Figure 1. The real part a; (left) and the imaginary part b (right) of the computed solution (solid
line) and the exact solution (dashed line) for the phase retrieval problem.

0.01 0.01
0.005 0.005
0 0
-0.005 -0.005
001, 64 27 00 64 127

Figure 2. Difference between the computed and exact solution, the real part (left) and the imaginary
part (right).

The true solutions a and b are plotted in figure 1 as dashed linear splines over grid points
0,..., N — 1 with N = 128. In the present example, we use the function values

fn) = (0052 (g) + 0.2) (ek(n—Sé)z N e,((n_%)z)

with « = —0.026 +i0.004 and n = 0, ..., 127.

Then approximative solutions are computed using the multilevel algorithm 4.2. The
results are given as solid lines in figure 1. Figure 2 shows the real and imaginary part of
the differences between the exact and computed solution. Since the Gauss—Newton method
is local quadratically convergent in these cases, a further improvement of the computed
solution depends only on the tolerance used in the abortion criteria. Here, we obtain
IF(y}) —gll ~4.6 x 107,

With the penalty parameter @ = 1 and the regularization parameter ¢ = 0.01,
algorithm 4.2 requires 12 iteration steps for the computation of y; on the initial level jo = 3,
then 16 iterations for y; on the fourth level, 19 steps for the fifth level, 12 steps for j = 6 and
12 steps for the finest level J = 7 with N = 128. We see that good initial guesses for the
Gauss—Newton method on fine grids yield to small numbers of iterations, in particular for the
fine levels.

The right plot in figure 1 shows additional small oscillations and a numerical artefact of the
computed solution, where the true solution is already vanishing. It has been observed that the
approximation of small components of the solution is worse than the one of large components.
But, the artefacts in the region where | f(n)| < ¢, i.e. outside of a relevant support, may be
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Figure 3. Intermediate solutions (solid lines) f3, fa (left) and fs, f (right) while proceeding the
multilevel strategy, final computed solution f (dashed line) for comparison.

suppressed by just setting the components a, and b, to zero. The small oscillations can be
faded out by smoothing terms or by a large number of damped Gauss—Newton steps.

Furthermore, algorithm 4.2 cannot work well for highly oscillating functions, because
there are not enough sampling points to reconstruct highly oscillating functions on a coarser
grid. Starting with jo = 4 or jo = 5 would provide useless approximative solutions on coarse
grids, and one would need a lot of expensive Gauss—Newton steps in fine levels.

The Gauss—Newton algorithms NLSQ-RES and NLSQ-ERR from [9], pp 416—17 has been
tested with the above examples, too. Both algorithms failed to converge, when these algorithms
were applied to the whole system (6) subject to (7) for N = 128 for all tested nontrivial initial
vectors and parameters. Otherwise, an application of these algorithms in each level was
successful. This is a way to optimize the total numerical effort. This demonstrates the
importance of the used multilevel strategy.

5.2. Tests for the constrained phase retrieval problem

The procedure to test the multilevel algorithm 4.1 for the constrained phase retrieval problem
is similar. Again realistic examples for N = 128 has been tested, where the algorithms
NLSQ-RES and NLSQ-ERR from [9], pp 41617 fail to converge. In the following example, we
use the function values

Fm) = (cos? () +0.2) (700007 1 1.5¢=0020 =707

withn = 0, ..., 127. Figure 3 gives the intermediate solutions f3, ..., fs and the computed
solution f for comparison. In the left plot the coarse grid solutions are clearly visible; they
are linear splines of larger step sizes. The intermediate solutions f3 and f; are shown for
demonstration; they are not necessary in practical applications of algorithm 4.1.

In general, the nonlinear problem (21) has various feasible solutions. First, ifz = (¢;) ,1,\':_01
is a solution of (21), then the reflected vector (cy_1_,) }11\/:—01 is a solution, too. Furthermore, there
are nontrivial distinct solutions. For instance, if h = (22, 14, 6, 1)T, then feasible solutions
of Q) arez = (1,2,4, DT, (1.874, 1.648, 1.229, 0.534)T and their reflections.

Figure 4 shows two different solutions f and g of (21), which are not reflections of each
other. The difference

w=lr(5)-

[ km _
8 (@)’ (k=0,...,127) (30)
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Figure 4. Two distinct computed solutions f and g for one right-hand side h (left) and the
difference § defined by (30) (right).

is shown in the right plot. The difference is relatively small for k € [0, 63], where the Fourier
transform itself has a non-negligible modulus. For larger k, the Fourier transform is nearly
vanishing and the computed difference is of the magnitude 10~

The observations about the numerical behaviour are similar to those of the unconstrained
phase retrieval problem. In particular, highly oscillating functions complicate the numerical
solution. But already due to the lower dimension and due the fact that in most observed
examples the nonlinear system (21) has actual solutions even in the coarser levels, the
constrained phase retrieval problem has a better numerical nature than the unconstrained
one.

Problems due to active unilateral constraints ¢;, = 0 have not been observed, cf [9],
p 188. A loss of convergence rate occurs for very small ¢;, and does not influence the
approximation of the searched function f. Alternatively, constrained optimization software
may be used.

Nevertheless, both phase retrieval problems are still ill posed. We have shown that this ill
posedness can be weakened by a multilevel Gauss—Newton method.

6. Conclusions

Two new phase retrieval algorithms for different one-dimensional phase problems have been
developed and tested with numerous realistic examples. These new algorithms are robust,
converge quickly and should be useful in a variety of physically important problems. The
obtained significant increase in speed could be used for real-time phase retrieval in laser optics
(e.g. FROG and TASC [3]).
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